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Abstract. The ground state of the two-electron donor–impurity complexes D− and D0
2 con-

fined in a quantum well is analysed by using a variational procedure. A model approximation
that can be used in the two-electron problem in order to separate the variables is proposed,
and it is shown that, for the D− negative ion and the D02 complex, the electron–electron
interaction may be eliminated, in this approximation, by introducing an additional effective
charge at a centre of symmetry. The D− binding energy is calculated as a function of the
GaAs/Ga1−xAlxAs quantum-well width for different magnetic field strength values, whereas the
D+2 and D0

2 dissociation energies are calculated as functions of the spacing between the impurities
in the complexes, and for different well widths. The results for the first(D0

2 → D+2 + e) and
the second(D+2 → D+D+ + e) ionization binding energies as functions of the well width are
presented for different separations between impurities. Finally, the scheme that we propose
is extremely simple and provides a realistic description of few-particle ground-state electronic
structures confined in a quantum well.

1. Introduction

Low-dimensional semiconductor microstructures with neutral and charged impurities and
impurity complexes exhibit new phenomena which present a lot of challenges to both
theoretical and experimental physics. A considerable amount of work has been carried out on
the shallow-neutral-donor electronic properties of GaAs/Ga1−xAl xAs quantum-well (QW)
structures [1–3]. It has been shown [4–6] that the dimensionality decreases with the atomic
confinement, and this leads to a change in the symmetry from spherical to planar and to
an increase in the ground- and excited-state binding energies. Shallow negative D− donors
(neutral shallow donors that each bind an additional electron) have been experimentally
observed [7, 8] in GaAs/Ga1−xAl xAs QWs. It has also been demonstrated [9, 10] by
means of variational calculations that the two-dimensional D− binding energy is about ten
times greater than the three-dimensional one, and that the impurity mean-value radius is
reduced by half when its form is changed from spherical to planar. For this reason, optical
excitations of the D− complex may fall in the same spectral [11] region as the D0 state in a
QW. The identification of the D− features in a given experimental spectrum is therefore not
straightforward, and this suggests the need for a careful theoretical analysis. Any calculation
of the D− spectrum has to take into account the electronic correlation, which is responsible
for the system’s stability. Variational [10–12] and Monte Carlo [13] methods have been
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used to find the D− binding energy in a QW. Each of these two types of calculation
requires a set of adjustable parameters, and quite long computational times (for example,
the Chandresekhar-type [14] trial function with seven variational parameters [12] has been
used). Due to the computational cost of these types of calculation, no detailed studies of
the evolution of the spectrum as functions of the well width, barrier height, donor position,
etc, have been performed. Similar difficulties should occur in D0

2-complex (two-electron
problem) analysis.

The linear and non-linear optical properties of GaAs/Ga1−xAl xAs QWs depend on
shallow levels dominated by excitons, which represent another few-particle-complex
example. Excitons and biexcitons (analogous to hydrogen atoms and molecules, resp-
ectively) are the best-known examples of such complexes. The trions predicted by Lampert
in 1958 [15], the negatively charged exciton (X−: two electrons bound to a hole), and the
positively charged exciton (X+: two holes bound to an electron) are much less familiar [16–
18]. The trion binding energy is substantially increased in a GaAs/Ga1−xAl xAs QW [16,
19]. It has also been demonstrated that as the electron–hole effective-mass ratiom∗e/m

∗
h is

reduced, excitonic complexes become more stable [20]. Asm∗e/m
∗
h→ 0, the X−, X+, and

biexciton complexes are reduced to the D− negative ion, D+2 complex, and D02 molecules,
respectively.

Each of the above-mentioned problems refers to one kind of few-particle-complex
problem in a non-integer space dimension changing between two and three. In dimensional-
scaling theory, it was shown [21] that the two-dimensional Schrödinger equation for few-
particle systems presents one special case in which the correlation effect becomes very
pronounced. For this condition, it is reasonable to use a symmetrical-structure [22] model
with fixed-electron relative positions, which was successfully used to calculate the binding
energy of a two-dimensional biexciton.

In this work we propose a similar model scheme for the ground-state electronic structure
of the D− centre and D02 covalently bound molecule. We will then show that the D− and
D0

2 (two-electron problem) Hamiltonians become separable and are reduced to the D0 and
D+2 (one-electron problem) Hamiltonians with an additional negative effective charge at a
symmetry centre.

This work is organized as follows. In section 2 we introduce the theoretical scheme
used throughout the study of the D+2 , D−, and D0

2 ground-state properties. Section 3 presents
our calculated results and discussion, and section 4 gives the conclusions.

2. The theoretical framework

As commented in the introduction, the symmetrical-structure model [22] provides a simple
framework for the treatment of few-particle systems. We choose to study the ground
state of the two-electron complexes D− and D0

2, which are conveniently reduced, via the
symmetrical-structure model, to the problem of D0 and D+2 centres (a one-electron problem).
In the case of the D− centre, we include the effects of applied magnetic fields, in order to
compare our results with previous theoretical calculations and experimental data.

2.1. The ground state of the bound D+2 complex

First we study the bound D+2 complex as a final state of the D0
2 molecular complex in

the ionization process for which the binding energy depends on the difference between the
D0

2 and D+2 ground-state energies. Additionally, the D+2 complex is one of the simplest
few-particle models, with two positive ions interchanging their only electron. We assume,
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for the sake of simplicity, that the two positive ions with separationR are located in the
centre region of a GaAs/Ga1−xAl xAs QW at the(0, 0, 0) and (R, 0, 0) positions. Within
the framework of the effective-mass approximation, the dimensionless Hamiltonian (without
nuclear repulsion) for the ground state of the D+2 complex may be written as

H = − 1

ρ1

∂

∂ρ1
ρ1

∂

∂ρ1
− ∂2

∂z2
− 1

ρ2
1

∂2

∂θ2
+ V (z)− 2

r1
− 2

r2
(2.1)

whereρ1, z, andθ are the electron cylindrical coordinates, andr1 and r2 are the distances
from the electron to ions 1 and 2, respectively, with

r2
1 = ρ2

1 + z2

and

r2
2 = ρ2

2 + z2 = ρ2
1 + R2− 2Rρ1 cosθ + z2.

The barrier potentialV (z) is taken to be a square well of heightV0 and widthL.
As the distance between the ions becomes very large(R→∞), the Hamiltonian (2.1)

reduces to the well-known case of the isolated hydrogenic impurity [5], and asR → 0,
it reduces to the case of the He+-atom-like impurity. To obtain the ground-state energy
corresponding to the above Hamiltonian, we choose a linear combination of Bastard-type [5]
trial envelope wave functions, with an explicit dependence on the lowest-energy solution
fk(z) for the quantum square well, i.e.,

9(ρi, z) = fk(z)[G(ρ1, z)+G2(ρ2, z)]

Gj(ρj , z) = exp[−α(ρ2
j + z2)1/2] j = 1, 2

(2.2a)

with

fk(z) =
{

coskz |z| 6 L/2
Ae−κ|z| |z| > L/2 (2.2b)

where the quantitiesA and κ are determined by the matching conditions at the interface,
andα is a variational parameter. As in our model the two ions are localized in the same
plane, parallel to the QW interfaces, the same variational parameter must be used for both
ion centres in the trial envelope function (2.2a). The ground-state energy is determined by
numerically minimizing with respect toα the expression

E(α,R,L) = 〈9|H |9〉/〈9|9〉
and the D+2 binding energyEb for the ionization process D+2 → D+D+ + e− is therefore
given by

Eb(R,L) = k2−minE(α,R,L) (2.3)

wherek2 is the lowest subband energy of the square well.

2.2. The model for the negative D− ion

In the case of the negative D− centre in a GaAs/Ga1−xAl xAs QW in the presence of an
magnetic field applied perpendicular to the interfaces, the Hamiltonian may be represented
as [11]

H =
2∑
i=1

H0(i)+ U(1, 2) (2.4a)
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with

H0(i) = −∇2
i + γLzi +

1

4
γ 2ρ2

i + V (zi)−
2Qe

ri
(2.4b)

and

U(1, 2) = 2

|r1− r2| −
1

2r1
− 1

2r2
(2.4c)

whereri = (ρ2
i + z2

i )
1/2 is the position of theith electron with respect to the fixed charge

Qe, ρi and zi are the corresponding cylindrical coordinates,Qe = 3/4 is the effective
charge (in units of the proton chargee), andγ = h̄ωc/2R∗y (h̄ωc is the cyclotron energy)
is a dimensionless magnetic field intensity (the magnetic field is taken perpendicular to the
interfaces). Notice that the above Hamiltonian is not separable and has no exact analytical
solution. As the QW width is close to the effective Bohr radiusa∗0 = h̄ε/e2m∗, the
electron orbits become almost planar [5] with the mean value of the radii diminished
to a∗0/2, and therefore, for such a situation, we propose a geometrical model [22] of a
quasi-two-dimensional D− negative ion with both electrons instantaneously localized at the
same distance with respect to the ion nucleus. Within this model, the D− Hamiltonian
becomes separable, and the effect of the electron–electron interaction is essentially taken
into account by the interaction of each of the electrons with a renormalized-nucleus effective
charge at the well centre. The solution is then a product of two one-particle wave functions
of a hydrogenic-like atom, and the D− ground-state energy is therefore equal to twice
the one-particle eigenvalue (the solution of the D− Hamiltonian is reduced to solving the
D0 Hamiltonian with a renormalized-nucleus effective charge at the well centre). In our
calculations, we have used a three-parameter one-particle trial envelope variational wave
function

ψ(ρ, z) = fk(z) exp(−λ−1
√
ρ2+ β2z2) exp(−αρ2)

proposed by Mulleret al [8] to describe the Landau levels in the limit of strong magnetic
fields. As we shall see later, the use of this trial wave function provides results in excellent
agreement with quantum Monte Carlo calculations [13] for both the D0 and D− states. In
order to calculate the D− ground-state energy, we have used the harmonic approximation
for the zero-point energy correction in the total D− energy, i.e., the energy corrections were
evaluated as a function of the angle between the two electron vector positions. Therefore, it
may be shown that the ionization process D− → D0+ e has the following binding energy:

Eb(D
−) = k2+ γ + ED0(Qe = 1)− 2

[
ED0(Qe = 3/4)+ 1

2
h̄ω

]
(2.5)

whereED0 corresponds to the energy associated with the Hamiltonian (2.4b).

2.3. The symmetrical-structure model for the D0
2 complex

In the framework of the effective-mass approximation, this problem becomes similar to that
of the H2 molecule, but the additional confinement presented by the QW potential reduces
the system symmetry and makes the problem more complicated. On the other hand, when
this confinement is considerable, the electronic motion becomes more correlated, and it is
then possible to use a symmetrical-structure model [22] to analyse the D0

2 ground state. The
two-electron Hamiltonian (without nuclear repulsion) for the D0

2 complex may be written as

H(D0
2) =

2∑
i=1

H0(i)+ U(1, 2) (2.6a)
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H0(i) = −∇2(i)− 2

|ri −R1| −
2

|ri −R2| −
2Qe

ri
+ V (zi) (2.6b)

U(1, 2) = 2

|r1− r2| +
2Qe

r1
+ 2Qe

r2
(2.6c)

where|ri −Rj | is the relative distance between theith electron and thej th ion. Similarly
to the case for the previous D− problem, the Hamiltonian becomes separable for correlated
motion in a symmetrical-structure [22] model for a confined D0

2 molecular complex. In this
case, an appropriate symmetrical-structure approximation may be considered, in which both
the two positive ions and the two electrons have opposite and symmetrical positions with
respect to the origin, i.e., the two electrons and two ions of the D0

2 complex are localized
at the corners of a parallelogram. In our model, the electrons conserve the symmetrical
positions at all times during their motion, and the ions, for the sake of simplicity, are
fixed in a plane centred in the QW, and parallel to the interfaces. For this configuration,
the Hamiltonian (2.6a) becomes separable whenr1 = −r2 andQe = −1/4, as the term
U(1, 2) which contains the electron–electron interaction vanishes, and the effect of the
electron–electron interaction is taken into account by the interaction of each of the electrons
with a renormalized-nucleus effectiveQe = −1/4 charge at the molecule centre. The wave
function for the Hamiltonian (2.6a) in this case has the form9(1, 2) = φ(1)φ(2), where
the wave functionsφ(i) satisfy the one-particle equation

H0(i)φ(i) = E(Qe)φ(i) i = 1, 2. (2.7)

The D0
2 complex ground-state energy isE(D0

2) = 2ED+2 (Qe = −1/4). The one-particle
HamiltonianH0(i) for Qe = 0 coincides with that for the one-electron D+2 complex, so the
ground-state D+2 energy is equal toE(D+2 ) = ED+2 (Qe = 0), and the binding energy for the
ionization process D02→ D+2 + e− (the first ionization) may be found from

Eb(D
0
2) = k2+ ED+2 (Qe = 0)− 2ED+2 (Qe = −1/4) (2.8)

and we adopt in equation (2.7) the same Bastard-type trial envelope function, equation (2.2),
as was previously used for the D+2 complex.

3. Results and discussion

In our calculations, the distance is measured in units of the effective Bohr radiusa∗0,
and the energy in effective rydbergs,R∗y = e2/2εa∗0, and we assume the GaAs values
of m∗ = 0.067m0 (m0 is the free-electron mass) and the static dielectric constant [23]
ε = 12.35 throughout both the well and the barrier.

In figure 1 we display the variation of the binding energyEb(R,L) of D+2 as a function
of the GaAs well width for three different separations of the nuclei,R = 500 Å, 100 Å and
50 Å. Each of theEb(R,L) curves reaches a maximum at approximately the same critical
valueL = Lc ≈ 30 Å. Notice that for narrow (L < Lc) QW widths, the 3D behaviour is
restored due to the effect of the overflow of the wave function to the barrier region. For
large (L� Lc) QW widths, one of course recovers the 3D behaviour. Also notice that one
finds the D+2 binding energy as essentially the 3D value of 1R∗y (as for the isolated impurity
D0) in the case of large separations of the nuclei (R →∞) and for narrow and large well
widths (cf. curve a in figure 1). For fixed QW widths, as the D+2 inter-nucleus separation
diminishes and becomes less than the effective Bohr radius (curve c in figure 1), the D+

2
three-particle system begins to behave rather like a He+ atom, with increasing values of the
binding energy. The results in figure 1 allow a study to be made, for different well widths,
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Figure 1. The ground-state variational binding energy for the D+2 complex centred in a
GaAs/Ga0.7Al 0.3As QW as a function of the QW width for three different values of the inter-
nucleus distanceR.

of the ionization mechanism D+2 → D+D+ + e, as the D+2 complex loses the last electron
(second ionization).

In order to obtain the D+2 -complex electronic energy or total energy (E) as a function
of the inter-nucleus distanceR, it is necessary to add the nuclear-repulsion energy (2/R),
and, therefore, the total energy is

E = minE(α,R,L)+ 2/R.

The results obtained for this energyE for different QW widths,L = 1000 Å, 200 Å, and
40 Å, are shown in figure 2. The equilibrium distance (Re) for curve a of figure 2, for
L = 1000 Å, is Re ' 2 a∗0 with a dissociation energy of 1.26R∗y , which essentially tends

Figure 2. The total energy of the D+2 complex (from the variational calculation) centred in a
GaAs/Ga0.7Al 0.3As QW as a function of the inter-nucleus distanceR, for different values of
the well widthL.
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to the corresponding experimental value 1.195R∗y for the case of the H+2 molecule [24] (in

fact our calculated value forL = 25 000Å is 1.175R∗y ). As the QW width decreases to

L = Lc ≈ 30 Å, the equilibrium position changes to approximatelyRe ' 1 a∗0 ' 100 Å
(curve c of figure 2), and the dissociation energy corresponds essentially to the two-
dimensional D+2 molecular complex energy value [21].

Figure 3. The ground-state binding energy for a negatively charged D− centred in a
GaAs/Ga0.75Al 0.25As QW as a function of the well widthL, and for different values of the
magnetic fieldγ , calculated by using our model (solid curves) within a variational procedure,
and including zero-point energy corrections. Also shown are theγ = 1 andγ = 3 variational
results obtained by Szwackaet al [11] (the dotted curve is a guide to the eye), and Monte
Carlo [13] values forL = 100 Å. The open dots in the figure represent experimental data from
reference [7].

In figure 3, we present the results of our variational calculation (with the zero-point
energy correction) for the D− binding energy as a function of the well width, for three
different magnetic field values corresponding toγ = 0, γ = 1, andγ = 3, as compared
to the γ = 1 andγ = 3 results from the variational calculation by Szwackaet al [11].
One may compare our results forL = 100 Å with both Monte Carlo calculations [13] and
experimental data [7]. Forγ = 0, our result (0.29R∗y ) coincides with the one obtained by the

quantum Monte Carlo method [13]. Forγ = 1 andL = 100Å, the D− binding energies are
0.77R∗y , 0.94R∗y , and 0.77R∗y , obtained by the Monte Carlo method [13], experiment [7],

and within our model calculation, respectively. Similarly, forL = 100 Å and γ = 3,
one obtains 1.13R∗y , 1.28R∗y , and 1.11R∗y , respectively. It is seen that our results are in
good agreement with Monte Carlo calculation [13], although we underestimate the binding
energy in comparison with experimental data [7]. We believe that this discrepancy may be
reduced if one includes effective-mass and dielectric constant mismatches in the well and
barriers.
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Figure 4. The ground-state binding energy for the D0
2 complex centred in a GaAs/Ga0.7Al 0.3As

QW as a function of the well widthL, for different inter-nucleus distances.

The results of our calculations for the D0
2 binding energy as a function of the QW

width for three different separations between the nuclei,R = 50 Å, 100 Å, and 500Å, are
presented in figure 4. It is apparent that all of the curves have similar forms with the binding
energy increasing by approximately 60% as the separation between nuclei diminishes from
500 Å to 50 Å. Notice that, for large separation of the nuclei (curve a of figure 4), the
D0

2 complex appears as two isolated hydrogenic-like atoms, whereas for distances less than
the effective Bohr radiusa∗0 (curve c of figure 4), it is essentially a He-like atom, and the
binding energy difference for the two separations (500Å and 50Å) tends to the ionization
energy difference for hydrogenic and He-like atoms.

In figure 5 we present the total energy of the D0
2 complex (including the nuclear-repulsion

Figure 5. The total energy of the D02 molecular complex centred in a GaAs/Ga0.7Al 0.3As QW
as a function of the inter-nucleus distanceR, for different values of the well widthL.
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energy) as a function of the separationR between the nuclei, for different QW widths. In
the case whereL = 1000 Å (weakly confined), our potential curve gives an equilibrium
inter-nucleus distance ofRe = 1.37 a∗0, in good agreement with the experimental value and
the result of a simple variational [25] calculation for the H2 molecule, which are 1.40 a∗0,
and 1.38 a∗0, respectively. The results for the dissociation energy are 2.6R∗y , 2.25R∗y , and

2.33R∗y , obtained using our model (L = 5000 Å), an improved LCAO method [25], and
experimental data [25], respectively. The dissociation energy for the potential curves in
figure 5 increases and the equilibrium distance diminishes as the QW width decreases to
40 Å, and one observes the opposite trend forL < 40 Å.

4. Conclusions

In this work we have presented results for the binding and dissociation energies of
D+2 and D0

2 molecular complex states in GaAs/Ga1−xAl xAs QWs obtained by using a
variational procedure. We have also studied the behaviour of the D− and D0

2 binding
energies as functions of the QW width, within a model approximation, in which one is
able to substitute in the electron–electron interaction by introducing an effective charge
at a centre of symmetry. Finally, the scheme that we used is extremely simple and
provides a realistic description of few-particle ground-state electronic structures confined
in semiconducting QWs.
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